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Introduction: From Theory to Simulation

Introduction to digital communications and simulation of digital
communications systems.

» A simple digital communication system and its theoretical
underpinnings
» Introduction to digital modulation
» Baseband and passband signals: complex envelope
» Noise and Randomness
» The matched filter receiver
» Bit-error rate

» Example: BPSK over AWGN, simulation in MATLAB
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Learning Objectives

» Theory of Digital Communications.

» Principles of Digital modulation.

» Communications Channel Model: Additive, White Gaussian
Noise.

» The Matched Filter Receiver.

» Finding the Probability of Error.

» Modeling a Digital Communications System in MATLAB.

» Representing Signals and Noise in MATLAB.
» Simulating a Communications System.
» Measuring Probability of Error via MATLAB Simulation.
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Elements of a Digital Communications System

Source: produces a sequence of information symbols b.
Transmitter: maps bit sequence to analog signal s(t).
Channel: models corruption of transmitted signal s(1).

Receiver: produces reconstructed sequence of information
symbols b from observed signal R(t).

b s(1) R(t)

o

Source > Transmitter > Channel » Receiver

Figure: Block Diagram of a Generic Digital Communications System




The Source

» The source models the statistical properties of the digital
information source.

» Three main parameters:

Source Alphabet: list of the possible information symbols
the source produces.

» Example: A = {0, 1}; symbols are called
bits.

» Alphabet for a source with M (typically, a
power of 2) symbols: A = {0,1,..., M—1}
of A—=dET, £3 o 2 (M —1) )

» Alphabet with positive and negative symbols
is often more convenient.

» Symbols may be complex valued; e.g.,
A=4E£1, 4%




A priori Probability: relative frequencies with which the source
produces each of the symbols.

» Example: a binary source that produces (on
average) equal numbers of 0 and 1 bits has
g = 711 = -;-

» Notation: 7r, denotes the probability of
observing the n-th symbol.

» Typically, a-priori probabilities are all equal,

le, Th = ﬁ
» A source with M symbols is called an M-ary
source.

» binary (M = 2)
» ternary (M = 3)
» quaternary (M = 4)




Symbol Rate: The number of information symbols the source
produces per second. Also called the baud rate R.

» Closely related: information rate Ry indicates
the number of bits the source produces per
second.

» Relationship: R, = R - log,(M).

» Also, T = 1/R is the symbol period.

Bit1 Bit2 | Symbol
0 o0 0
0 1 1
1 0 2
1 1 3

Table: Two bits can be represented in one quaternary symbol.




Remarks

» This view of the source is simplified.

» We have omitted important functionality normally found in
the source, including

» error correction coding and interleaving, and
» mapping bits to symbols.

» This simplified view is sufficient for our initial discussions.
» Missing functionality will be revisited when needed.



Modeling the Source in MATLAB
» Objective: Write a MATLAB function to be invoked as:

Symbols = RandomSymbols( N, Alphabet, Priors);

» The input parameters are

» N: number of input symbols to be produced.
» Alphabet: Source alphabet to draw symbols from.

» Example: Alphabet = [1 -1];
» priors: a priori probabilities for the input symbols.
» Example:

Priors = ones(size (Alphabet))/length (Alphabet) ;

» The OUtpUt Symbols IS a vector

» with v elements,

» drawn from alphabet, and

» the number of times each symbol occurs is (approximately)
proportional to the corresponding element in priors. '




Reminders

» MATLAB'’s basic data units are vectors and matrices.

» Vectors are best thought of as lists of numbers; vectors
often contain samples of a signal.
» There are many ways to create vectors, including
» Explicitly: alphabet = [1 -1];
» Colon operator: nn = 1:10;
» Via a function: priors=ones(1,5) /5;
» This leads to very concise programs; for-loops are rarely
needed.

» MATLAB has a very large number of available functions.

» Reduces programming to combining existing building
blocks.
» Difficulty: find out what is available; use built-in help.




Writing a MATLAB Function

» A MATLAB function must
» begin with a line of the form

function [outl,outZ2] = FunctionName(inl, inZ2, in3)

» be stored in a file with the same name as the function name
and extension '.m’.

» For our symbol generator, the file name must be
RandomSymbols.m and

» the first line must be

function Symbols = RandomSymbols (N, Alphabet, Priors)




Writing a MATLAB Function

» A MATLAB function should
» have a second line of the form

tFunctionName - brief description of function
» This line is called the “H1 header”
» have a more detailed description of the function and how to
use it on subsequent lines.

» The detailed description is separated from the H1 header by
a line with only a 2.

» Each of these lines must begin with a ¢ to mark it as a
comment.

» These comments become part of the built-in help system.



The Header of Function RandomSymbols

function Symbols = RandomSymbols (N, Alphabet, Priors)
RandomSymbols - generate a vector of random information symbols

o o op

A vector of N random information symbols drawn from a given

5 2% alphabet and with specified a priori probabilities is produced.
%
% Inputs:
2 N - number of symbols to be generated
2 Alphabet - vector containing permitted symbols
10 % Priors — a priori probabilities for symbols
%
¢ Example:

oo

Symbols = RandomSymbols (N, Alphabet, Priors)




Algorithm for Generating Random Symbols

» For each of the symbols to be generated we use the
following algorithm:
» Begin by computing the cumulative sum over the priors.
» Example: Let priors = [0.25 0.25 0.5], then the
cumulative sum equals cpriors = [0 0.25 0.5 1].
» For each symbol, generate a uniform random number
between zero and one.
» The MATLAB function rand does that.
» Determine between which elements of the cumulative sum

the random number falls and select the corresponding
symbol from the alphabet.

» Example: Assume the random number generated is 0.3.

» This number falls between the second and third element of

CPriors.
» The second symbol from the alphabet is selected.




MATLAB Implementation

» In MATLAB, the above algorithm can be “vectorized” to
work on the entire sequence at once.

CPriors = [0 cumsum( Priors )];
rr = rand(1l, N);

for kk=l:length (Alphabet)
42 Matches = rr > CPriors(kk) & rr <= CPriors (kk+1l);
Symbols( Matches ) = Alphabet( kk );
end




Testing Function RandomSymo1ls

» We can invoke and test the function randomsymbols as
shown below.

» A histogram of the generated symbols should reflect the
specified a priori probabilities.

%% set parameters

N 1000;

Alphabet [-3 -1 1 3];
Priors [@ad: 02 03 0.:4]:

%% generate symbols and plot histogram

Symbols = RandomSymbols( N, Alphabet, Priors );
hist (Symbols, -4:4 );

grid

xlabel (' Symbol Value’)

ylabel (' Number _of Occurences’)




Resulting Histogram
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The Transmitter

» The transmitter translates the information symbols at its
input into signals that are “appropriate” for the channel,
e.g.,

» meet bandwidth requirements due to regulatory or
propagation considerations,
» provide good receiver performance in the face of channel
impairments:
> noise,
» distortion (i.e., undesired linear filtering),
» interference.

» A digital communication system transmits only a discrete
set of information symbols.

» Correspondingly, only a discrete set of possible signals is
employed by the transmitter.

» The transmitted signal is an analog (continuous-time,
continuous amplitude) signal.




lllustrative Example
» The sources produces symbols from the alphabet

A ={0,1}.
» The transmitter uses the following rule to map symbols to
signals:
» If the n-th symbol is b, = 0, then the transmitter sends the
signal

A for(n—1)T <t<nT
SO(t)z{ 0 elsé. ks

» |f the n-th symbol is b, = 1, then the transmitter sends the
signal

si(t)y = —A for(n—3)T<t<nT

{ A for(n—=NT<t<(n-3T
0 else.
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Symbol Sequence b= {1,0,1,1,0,0,1,0,1,0}
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MATLAB Code for Example

Listing : plot_ TxExampleOrth.m

=] 10 1.1 0 01 @ 1 Q]: Zsymbol sequence
Bl = 20 % samples per symbol period
A = 3;
6
Signals = A*[ ones (1, £fsT); % signals, one per row
ones (1,fsT/2) -ones(l, fsT/2)];
tt = 0:1/faT:1length{b)-1/fsT; % time axis for plotting

11
%% generate signal
TXSignal = [];
for kk=1:length (b)
TXSighal = [ "TXSignal Signals{ bBikki+l, = ¥} 1;
16 end




MATLAB Code for Example

Listing : plot_ TxExampleOrth.m

%% w.« and plot
plot (tt, TXSignal)

20 axis ([0 length(b) -(A+1l) (A+1)]);
grid

xlabel (' Time/T")




The Communications Channel

» The communications channel models the degradation the
transmitted signal experiences on its way to the receiver.

» For wireless communications systems, we are concerned
primarily with:
» Noise: random signal added to received signal.
» Mainly due to thermal noise from electronic components in

the receiver.
» Can also model interference from other emitters in the

vicinity of the receiver.

» Statistical model is used to describe noise.

» Distortion: undesired filtering during propagation.

» Mainly due to multi-path propagation.

» Both deterministic and statistical models are appropriate
depending on time-scale of interest.

» Nature and dynamics of distortion is a key difference to
wired systems.




Thermal Noise

» At temperatures above absolute zero, electrons move
randomly in a conducting medium, including the electronic
components in the front-end of a receiver.

» This leads to a random waveform.
» The power of the random waveform equals Py = kTyB.

> k: Boltzmann’s constant (1.38 - 10723 Ws/K).

» To: temperature in degrees Kelvin (room temperature
~ 290 K).

» For bandwidth equalto 1 MHz, Py ~ 4-10"1 W
(—114 dBm).

» Noise power is small, but power of received signal
decreases rapidly with distance from transmitter.

» Noise provides a fundamental limit to the range and/or rate
at which communication is possible.




Multi-Path

» In a multi-path environment, the receiver sees the
combination of multiple scaled and delayed versions of the
transmitted signal.




Distortion from Multi-Path

5

» Received signal
“looks” very
different from
transmitted signal.

» Inter-symbol
interference (ISI).

» Multi-path is a very
z ; : ; : serious problem
-5 for wireless
systems.

Amplitude




The Recelver

» The receiver is designed to reconstruct the original
information sequence b.
» Towards this objective, the receiver uses

» the received signal R(1),
» knowledge about how the transmitter works,

» Specifically, the receiver knows how symbols are mapped to

signals.
» the a-priori probability and rate of the source.

» The transmitted signal typically contains information that
allows the receiver to gain information about the channel,
including

» training sequences to estimate the impulse response of the
channel,

» synchronization preambles to determine symbol locations
and adjust amplifier gains.




The Receiver

» The receiver input is an analog signal and it’s output is a
sequence of discrete information symbols.

» Consequently, the receiver must perform analog-to-digital
conversion (sampling).

» Correspondingly, the receiver can be divided into an
analog front-end followed by digital processing.

» Modern receivers have simple front-ends and sophisticated
digital processing stages.

» Digital processing is performed on standard digital
hardware (from ASICs to general purpose processors).

» Moore’s law can be relied on to boost the performance of
digital communications systems.



Measures of Performance

» The receiver is expected to perform its function optimally.
» Question: optimal in what sense?
» Measure of performance must be statistical in nature.

» observed signal is random, and
» transmitted symbol sequence is random.

» Metric must reflect the reliability with which information is
reconstructed at the receiver.

» Objective: Design the receiver that minimizes the
probability of a symbol error.

» Also referred to as symbol error rate.
» Closely related to bit error rate (BER).



Summary

» We have taken a brief look at the elements of a
communication system.

» Source,

» Transmitter,
» Channel, and
» Receiver.

» We will revisit each of these elements for a more rigorous
analysis.
» Intention: Provide enough detail to allow simulation of a
communication system.



Digital Modulation

» Digital modulation is performed by the transmitter.

» It refers to the process of converting a sequence of
information symbols into a transmitted (analog) signal.

» The possibilities for performing this process are virtually
without limits, including

» varying, the amplitude, frequency, and/or phase of a
sinusoidal signal depending on the information sequence,

» making the currently transmitted signal on some or all of the
previously transmitted symbols (modulation with memory).

» Initially, we focus on a simple, yet rich, class of modulation
formats referred to as linear modulation.




Linear Modulation

» Linear modulation may be thought of as the digital
equivalent of amplitude modulation.

» The instantaneous amplitude of the transmitted signal is
proportional to the current information symbol.

» Specifically, a linearly modulated signal may be written as

N-—1
s(t)=)_ by-p(t—nT)
n=0

where,

» b, denotes the n-th information symbol, and
» p(t) denotes a pulse of finite duration.
» Recall that T is the duration of a symbol.




Linear Modulation

» Note, that the expression

N—1

st=_b° t—nT
b S— (1) ,;)np( )

is linear in the symbols bj,.

» Different modulation formats are
Yy 8(t—nT) constructed by choosing appropriate
symbol alphabets, e.g.,
» BPSK: b, € {1, -1}
» OOK: b, € {0,1}
» PAM: b, € {£1,..., +(M—1)}.




Linear Modulation in MATLAB

» To simulate a linear modulator in MATLAB, we will need a

13

function with a function header like this:

function Signal = LinearModulation( Symbols, Pulse, £fsT )
LinearModulation - linear modulation of symbols with given
pulse shape

o o o

ole

A sequence of information symbols is linearly modulated. Pulse
shaping is performed using the pulse shape passed as input

parameter Pulse. The integer fsT indicates how many samples
per symbol period are taken. The length of the Pulse vector may
be longer than fsT; this corresponds to partial-response signal

o o oe oe oe

% Inputs:
% Symbols — vector of information symbols
% Pulse - vector containing the pulse used for shaping

ole

£sT - (integer) number of samples per symbol period



Linear Modulation in MATLAB

» In the body of the function, the sum of the pulses is

computed.
» There are two issues that require some care:
» Each pulse must be inserted in the correct position in the

output signal.
» Recall that the expression for the output signal s(t) contains

the terms p(t — nT).
» The term p(t — nT) reflects pulses delayed by nT.

» Pulses may overlap.
» If the duration of a pulse is longer than T, then pulses
overlap.
» Such overlapping pulses are added.
» This situation is called partial response signaling.



Body of Function LinearModulation

19 & initialize storage for Signal
LenSignal = length (Symbols) «fsT + (length(Pulse))-£fsT;
Signal = zeros( 1, LenSignal );

§ loop over symbols and insert corresponding segment into Signal
24 for kk = l:length(Symbols)

ind_start = (kk-1)*£fsT + 1;

ind_end = (kk-1)xfsT + length (Pulse);

Signal (ind_start:ind_end) = Signal(ind_start:ind_end) +
29 Symbols (kk) * Pulse;

end




Testing Function LinearModulation

Listing : plot_LinearModRect.m

%% Parameters:

faT = 20;
Alphabet = [1,-1];
6 Priors = 0.5+x[1 1];
Pulse = ones(1l, £sT); % rectangular pulse

%% symbols and Signal using our functions
Symbocls = RandomSymbols (10, Alphabet, Priors);

11 Signal = LinearModulation (Symbols,Pulse,fsT);
% plot
tt = (0 : length(Signal)-1 ) /£fsT;

plot (tt, Signal)

axis ([0 length(Signal) /fsT -1.5 1.5])
16 grid

xlabel (! Time/T’)

ylabel (' Amplitude’)




Linear Modulation with Rectangular Pulses
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Linear Modulation with sinc-Pulses

» More interesting and practical waveforms arise when
smoother pulses are used.
» A good example are truncated sinc functions.
» The sinc function is defined as:

sinc(x) = w with sinc(0) = 1.

» Specifically, we will use pulses defined by

sin(rtt/ T)
nt/T

p(t) = sinc(mtt/ T) =

» pulses are truncated to span L symbol periods, and
» delayed to be causal.

» Toolbox contains function sinc( 1, £sT ).




A Truncated Sinc Pulse

1.5

» Pulse is very smooth,
» spans ten symbol
periods,

» is zero at location of
other symbols.

» Nyquist pulse.




Linear Modulation with Sinc Pulses
2

» Resulting waveform is
also very smooth; expect
good spectral properties.

» Symbols are harder to
discern; partial response
signaling induces
“controlled” ISI.

» But, there is no ISI at
symbol locations.

5 10 15 20 » Transients at beginning
Time/T and end.




Passband Signals

» So far, all modulated signals we considered are baseband
signals.
» Baseband signals have frequency spectra concentrated
near zero frequency.
» However, for wireless communications passband signals
must be used.

» Passband signals have frequency spectra concentrated
around a carrier frequency fc.

» Baseband signals can be converted to passband signals
through up-conversion.

» Passband signals can be converted to baseband signals
through down-conversion.




Up-Conversion

Acos(27f.t)

si(t) » The passband signal sp(f) is
constructed from two (digitally
modulated) baseband signals, s/(t)
sp(t) and sq(t). |
» Note that two signals can be
carried simultaneously!
» This is a consegquence of
cos(2rtf.t) and sin(2tf.t) being
orthogonal.

Asin(2rtf.t)




Baseband Equivalent Signals
» The passband signal sp(t) can be written as
sp(t) = V2. Asi(t) - cos(2rtf,t) + V2 - Asq(t) - sin(27fst).

» If we define s(t) = s,(t) —j- sq(t), then sp(t) can also be
expressed as

sp(t) = V2. A-R{s(t) - exp(j2rfst)}.

» The signal s(t):
» is called the baseband equivalent or the complex envelope
of the passband signal sp(t).
» It contains the same information as sp(t).
» Note that s(t) is complex-valued.




lllustration: QPSK with f, =2/ T

» Passband signal (top):
——————————— segments of sinusoids
A . | . with different phases.

g o {11 » Phase changes occur
s 1\ Y |\ ‘ at multiples of T.

N S S S SN I S S » Baseband signal

¢ 1= 3 W ¥ *N (bottom) is complex
valued; magnitude and

2 1
. phase are plotted.
g § 05 | » Magnitude is constant
' 1
8 N E ol (rectangular pulses).
% 5 0 %% 5 10

Time/T Tima'T




MATLAB Code for QPSK lllustration

Listing : plot_LinearModQPSK.m

2% Parameters:

faT = 20;

L = 10;

et = 2; % carrier frequency
7 Alphabet = [1, Jj, -3, -11; % QPSK

Priors = 0.25+x[1 1 1 1});

Pulse = ones (1, £sT) ; % rectangular pulse

%% symbols and Signal using our functions

12 Symbols = RandomSymbols (10, Alphabet, Priors);
Signal = LinearModulation (Symbols,Pulse, £sT);
%% passband signal
tt = (0 : length(Signal)-1 ) /£fsT;

Signal_PB = sqrt (2)+real( Signal .x» exp(—j*2xpixfcxtt) );



MATLAB Code for QPSK lllustration

Listing : plot_LinearModQPSK.m

subplot (2,1, 1)
plot ( tt, Signal_PB )
grid

22 xlabel ('Time/T’)
ylabel (' Amplitude’)

subplot (2,2, 3)

plot ( tt, abs( Signal ) )
27 grid

xlabel (' Time/T’)

ylabel (" Magnitude”)

subplot (2, 2, 4)

32 plot( tt, angle( Signal )/pi )
grid
xlabel (" Time/T’)
ylabel (' Phase/\pi’)




Frequency Domain Perspective
» In the frequency domain:

S(f) = V2 -Sp(f+ 1) forf+£f>0
N 0 else.

» Factor /2 ensures both signals have the same power.

Sp(f) s(f)
V’E A
I A N
// \\
f > f




Baseband Equivalent System

» The baseband description of the transmitted signal is very
convenient:
» it is more compact than the passband signal as it does not

include the carrier component,
» while retaining all relevant information.

» However, we are also concerned what happens to the
signal as it propagates to the receiver.

» Question: Do baseband technigues extend to other parts
of a passband communications system?




Passband System

V2Acos(2rtf:t) V2 cos(27mfst)

LPF —»

hp(t)

Sa(1) Rq(1)
Y <?7 —@A LPF |—+—5

V2Asin(27tf,t) V2sin(27tf,t)




Baseband Equivalent System

N(t)

s(t) R(t)

—— h(t)

» The passband system can be interpreted as follows to yield
an equivalent system that employs only baseband signals:

>

baseband equivalent transmitted signal:

s(t) = si(t) —j- sq(t).

baseband equivalent channel with complex valued impulse
response: h(t).

baseband equivalent received signal:

R(t) = Ry(t) — j- Rq(t).

complex valued, additive Gaussian noise: N(t)




Baseband Equivalent Channel

» The baseband equivalent channel is defined by the entire
shaded box in the block diagram for the passband system
(excluding additive noise).

» The relationship between the passband and baseband
equivalent channel is

hp(t) = R{h(t) -exp(j2rfct)}

in the time domain.
» Example:

he(t) =Y ak-o(t—t) => h(t) =) ay- e ™™ 5(t — ).
k k



Baseband Equivalent Channel

» In the frequency domain

B 0 else.




Summary

» The baseband equivalent channel is much simpler than the
passband model.

» Up and down conversion are eliminated.
» Expressions for signals do not contain carrier terms.

» The baseband equivalent signals are easier to represent
for simulation.

» Since they are low-pass signals, they are easily sampled.

» No information is lost when using baseband equivalent
signals, instead of passband signals.

» Standard, linear system equations hold:
R(t) = s(t) = h(t) + n(t) and R(f) = S(f) - H(f) + N(f).

» Conclusion: Use baseband equivalent signals and
systems.




