Part II

Introduction: From Theory to Simulation

Introduction: From Theory to Simulation

Introduction to digital communications and simulation of digital communications systems.

- A simple digital communication system and its theoretical underpinnings
 - Introduction to digital modulation
 - Baseband and passband signals: complex envelope
 - Noise and Randomness
 - The matched filter receiver
 - Bit-error rate
- Example: BPSK over AWGN, simulation in MATLAB

Outline

Part I: Learning Objectives

Elements of a Digital Communications System

Digital Modulation

Channel Model

Receiver

MATLAB Simulation

Learning Objectives

- Theory of Digital Communications.
 - Principles of Digital modulation.
 - Communications Channel Model: Additive, White Gaussian Noise.
 - The Matched Filter Receiver.
 - Finding the Probability of Error.
- Modeling a Digital Communications System in MATLAB.
 - Representing Signals and Noise in MATLAB.
 - Simulating a Communications System.
 - Measuring Probability of Error via MATLAB Simulation.

Outline

Part I: Learning Objectives

Elements of a Digital Communications System

Digital Modulation

Channel Model

Receiver

MATLAB Simulation

Elements of a Digital Communications System

Source: produces a sequence of information symbols b.

Transmitter: maps bit sequence to analog signal s(t).

Channel: models corruption of transmitted signal s(t).

Receiver: produces reconstructed sequence of information

symbols \hat{b} from observed signal R(t).

Figure: Block Diagram of a Generic Digital Communications System

The Source

- The source models the statistical properties of the digital information source.
- Three main parameters:
 - Source Alphabet: list of the possible information symbols the source produces.
 - Example: A = {0,1}; symbols are called bits.
 - Alphabet for a source with M (typically, a power of 2) symbols: $\mathcal{A} = \{0, 1, ..., M-1\}$ or $\mathcal{A} = \{\pm 1, \pm 3, ..., \pm (M-1)\}$.
 - Alphabet with positive and negative symbols is often more convenient.
 - Symbols may be complex valued; e.g., $A = \{\pm 1, \pm j\}.$

A priori Probability: relative frequencies with which the source produces each of the symbols.

- Example: a binary source that produces (on average) equal numbers of 0 and 1 bits has $\pi_0 = \pi_1 = \frac{1}{2}$.
- Notation: π_n denotes the probability of observing the n-th symbol.
- ► Typically, a-priori probabilities are all equal, i.e., $\pi_n = \frac{1}{M}$.
- A source with M symbols is called an M-ary source.
 - ▶ binary (M = 2)
 - ▶ ternary (*M* = 3)
 - quaternary (M = 4)

Symbol Rate: The number of information symbols the source produces per second. Also called the baud rate R.

- Closely related: information rate R_b indicates the number of bits the source produces per second.
- ▶ Relationship: $R_b = R \cdot \log_2(M)$.
- Also, T = 1/R is the symbol period.

Bit 1	Bit 2	Symbol
0	0	0
0	1	1
1	0	2
1	1	3

Table: Two bits can be represented in one quaternary symbol.

Remarks

- This view of the source is simplified.
- We have omitted important functionality normally found in the source, including
 - error correction coding and interleaving, and
 - mapping bits to symbols.
- This simplified view is sufficient for our initial discussions.
- Missing functionality will be revisited when needed.

Modeling the Source in MATLAB

Objective: Write a MATLAB function to be invoked as:

```
Symbols = RandomSymbols( N, Alphabet, Priors);
```

- The input parameters are
 - N: number of input symbols to be produced.
 - Alphabet: source alphabet to draw symbols from.
 - Example: Alphabet = [1 -1];
 - Priors: a priori probabilities for the input symbols.
 - Example:

```
Priors = ones(size(Alphabet))/length(Alphabet);
```

- The output symbols is a vector
 - with N elements,
 - drawn from Alphabet, and
 - the number of times each symbol occurs is (approximately) proportional to the corresponding element in Priors.

Reminders

- MATLAB's basic data units are vectors and matrices.
 - Vectors are best thought of as lists of numbers; vectors often contain samples of a signal.
 - There are many ways to create vectors, including
 - Explicitly: Alphabet = [1 -1];
 - Colon operator: nn = 1:10;
 - Via a function: Priors=ones(1,5)/5;
 - This leads to very concise programs; for-loops are rarely needed.
- MATLAB has a very large number of available functions.
 - Reduces programming to combining existing building blocks.
 - Difficulty: find out what is available; use built-in help.

Writing a MATLAB Function

- A MATLAB function must
 - begin with a line of the form

```
function [out1,out2] = FunctionName(in1, in2, in3)
```

- be stored in a file with the same name as the function name and extension '.m'.
- For our symbol generator, the file name must be RandomSymbols.m and
- the first line must be

```
function Symbols = RandomSymbols(N, Alphabet, Priors)
```

Writing a MATLAB Function

- A MATLAB function should
 - have a second line of the form

```
%FunctionName - brief description of function
```

- This line is called the "H1 header."
- have a more detailed description of the function and how to use it on subsequent lines.
 - The detailed description is separated from the H1 header by a line with only a %.
 - Each of these lines must begin with a % to mark it as a comment.
- These comments become part of the built-in help system.

The Header of Function RandomSymbols

```
function Symbols = RandomSymbols(N, Alphabet, Priors)
% RandomSymbols - generate a vector of random information symbols
%
% A vector of N random information symbols drawn from a given
5 % alphabet and with specified a priori probabilities is produced.
%
% Inputs:
% N - number of symbols to be generated
% Alphabet - vector containing permitted symbols
10 % Priors - a priori probabilities for symbols
%
% Example:
% Symbols = RandomSymbols(N, Alphabet, Priors)
```

Algorithm for Generating Random Symbols

- For each of the symbols to be generated we use the following algorithm:
 - Begin by computing the cumulative sum over the priors.
 - Example: Let Priors = [0.25 0.25 0.5], then the cumulative sum equals CPriors = [0 0.25 0.5 1].
 - For each symbol, generate a uniform random number between zero and one.
 - The MATLAB function rand does that.
 - Determine between which elements of the cumulative sum the random number falls and select the corresponding symbol from the alphabet.
 - Example: Assume the random number generated is 0.3.
 - This number falls between the second and third element of CPriors.
 - The second symbol from the alphabet is selected.

MATLAB Implementation

In MATLAB, the above algorithm can be "vectorized" to work on the entire sequence at once.

```
CPriors = [0 cumsum( Priors )];
rr = rand(1, N);

for kk=1:length(Alphabet)

Matches = rr > CPriors(kk) & rr <= CPriors(kk+1);
Symbols( Matches ) = Alphabet( kk );
end</pre>
```

Testing Function RandomSymols

- We can invoke and test the function RandomSymbols as shown below.
- A histogram of the generated symbols should reflect the specified a priori probabilities.

```
%% set parameters
N = 1000;
Alphabet = [-3 -1 1 3];
Priors = [0.1 0.2 0.3 0.4];

10
%% generate symbols and plot histogram
Symbols = RandomSymbols( N, Alphabet, Priors );
hist(Symbols, -4:4 );
grid

15 xlabel('Symbol_Value')
ylabel('Number_of_Occurences')
```

Resulting Histogram

The Transmitter

- The transmitter translates the information symbols at its input into signals that are "appropriate" for the channel, e.g.,
 - meet bandwidth requirements due to regulatory or propagation considerations,
 - provide good receiver performance in the face of channel impairments:
 - noise,
 - distortion (i.e., undesired linear filtering),
 - interference.
- A digital communication system transmits only a discrete set of information symbols.
 - Correspondingly, only a discrete set of possible signals is employed by the transmitter.
 - The transmitted signal is an analog (continuous-time, continuous amplitude) signal.

Illustrative Example

- ▶ The sources produces symbols from the alphabet $A = \{0, 1\}.$
- The transmitter uses the following rule to map symbols to signals:
 - If the *n*-th symbol is $b_n = 0$, then the transmitter sends the signal

$$s_0(t) = \begin{cases} A & \text{for } (n-1)T \leq t < nT \\ 0 & \text{else.} \end{cases}$$

If the *n*-th symbol is $b_n = 1$, then the transmitter sends the signal

$$s_1(t) = \begin{cases} A & \text{for } (n-1)T \le t < (n-\frac{1}{2})T \\ -A & \text{for } (n-\frac{1}{2})T \le t < nT \\ 0 & \text{else.} \end{cases}$$

Symbol Sequence $b = \{1, 0, 1, 1, 0, 0, 1, 0, 1, 0\}$

MATLAB Code for Example

Listing: plot_TxExampleOrth.m

MATLAB Code for Example

Listing: plot_TxExampleOrth.m

```
%% ... and plot
plot(tt, TXSignal)
20 axis([0 length(b) -(A+1) (A+1)]);
  grid
  xlabel('Time/T')
```

The Communications Channel

- The communications channel models the degradation the transmitted signal experiences on its way to the receiver.
- For wireless communications systems, we are concerned primarily with:
 - Noise: random signal added to received signal.
 - Mainly due to thermal noise from electronic components in the receiver.
 - Can also model interference from other emitters in the vicinity of the receiver.
 - Statistical model is used to describe noise.
 - Distortion: undesired filtering during propagation.
 - Mainly due to multi-path propagation.
 - Both deterministic and statistical models are appropriate depending on time-scale of interest.
 - Nature and dynamics of distortion is a key difference to wired systems.

Thermal Noise

- At temperatures above absolute zero, electrons move randomly in a conducting medium, including the electronic components in the front-end of a receiver.
- This leads to a random waveform.
 - ▶ The power of the random waveform equals $P_N = kT_0B$.
 - k: Boltzmann's constant (1.38 · 10⁻²³ Ws/K).
 - ► T₀: temperature in degrees Kelvin (room temperature ≈ 290 K).
 - For bandwidth equal to 1 MHz, $P_N \approx 4 \cdot 10^{-15}$ W (-114 dBm).
- Noise power is small, but power of received signal decreases rapidly with distance from transmitter.
 - Noise provides a fundamental limit to the range and/or rate at which communication is possible.

Multi-Path

In a multi-path environment, the receiver sees the combination of multiple scaled and delayed versions of the transmitted signal.

Distortion from Multi-Path

- Received signal "looks" very different from transmitted signal.
- Inter-symbol interference (ISI).
- Multi-path is a very serious problem for wireless systems.

The Receiver

- The receiver is designed to reconstruct the original information sequence b.
- Towards this objective, the receiver uses
 - the received signal R(t),
 - knowledge about how the transmitter works,
 - Specifically, the receiver knows how symbols are mapped to signals.
 - the a-priori probability and rate of the source.
- The transmitted signal typically contains information that allows the receiver to gain information about the channel, including
 - training sequences to estimate the impulse response of the channel,
 - synchronization preambles to determine symbol locations and adjust amplifier gains.

The Receiver

- The receiver input is an analog signal and it's output is a sequence of discrete information symbols.
 - Consequently, the receiver must perform analog-to-digital conversion (sampling).
- Correspondingly, the receiver can be divided into an analog front-end followed by digital processing.
 - Modern receivers have simple front-ends and sophisticated digital processing stages.
 - Digital processing is performed on standard digital hardware (from ASICs to general purpose processors).
 - Moore's law can be relied on to boost the performance of digital communications systems.

Measures of Performance

- The receiver is expected to perform its function optimally.
- Question: optimal in what sense?
 - Measure of performance must be statistical in nature.
 - observed signal is random, and
 - transmitted symbol sequence is random.
 - Metric must reflect the reliability with which information is reconstructed at the receiver.
- Objective: Design the receiver that minimizes the probability of a symbol error.
 - Also referred to as symbol error rate.
 - Closely related to bit error rate (BER).

Summary

- We have taken a brief look at the elements of a communication system.
 - Source,
 - Transmitter,
 - Channel, and
 - Receiver.
- We will revisit each of these elements for a more rigorous analysis.
 - Intention: Provide enough detail to allow simulation of a communication system.

Digital Modulation

- Digital modulation is performed by the transmitter.
- It refers to the process of converting a sequence of information symbols into a transmitted (analog) signal.
- The possibilities for performing this process are virtually without limits, including
 - varying, the amplitude, frequency, and/or phase of a sinusoidal signal depending on the information sequence,
 - making the currently transmitted signal on some or all of the previously transmitted symbols (modulation with memory).
- Initially, we focus on a simple, yet rich, class of modulation formats referred to as linear modulation.

Linear Modulation

- Linear modulation may be thought of as the digital equivalent of amplitude modulation.
 - The instantaneous amplitude of the transmitted signal is proportional to the current information symbol.
- Specifically, a linearly modulated signal may be written as

$$s(t) = \sum_{n=0}^{N-1} b_n \cdot p(t - nT)$$

where,

- b_n denotes the n-th information symbol, and
- p(t) denotes a pulse of finite duration.
- Recall that T is the duration of a symbol.

Linear Modulation

Note, that the expression

$$s(t) = \sum_{n=0}^{N-1} b_n \cdot p(t - nT)$$

is linear in the symbols b_n .

- Different modulation formats are constructed by choosing appropriate symbol alphabets, e.g.,
 - ▶ **BPSK:** $b_n \in \{1, -1\}$
 - ▶ **OOK**: $b_n \in \{0, 1\}$
 - ▶ **PAM**: $b_n \in \{\pm 1, ..., \pm (M-1)\}$.

Linear Modulation in MATLAB

To simulate a linear modulator in MATLAB, we will need a function with a function header like this:

```
function Signal = LinearModulation( Symbols, Pulse, fsT)
% LinearModulation - linear modulation of symbols with given
3 % pulse shape
%
% A sequence of information symbols is linearly modulated. Pulse
% shaping is performed using the pulse shape passed as input
% parameter Pulse. The integer fsT indicates how many samples
8 % per symbol period are taken. The length of the Pulse vector may
% be longer than fsT; this corresponds to partial-response signal.
%
% Inputs:
% Symbols - vector of information symbols
13 % Pulse - vector containing the pulse used for shaping
% fsT - (integer) number of samples per symbol period
```

Linear Modulation in MATLAB

- In the body of the function, the sum of the pulses is computed.
- There are two issues that require some care:
 - Each pulse must be inserted in the correct position in the output signal.
 - Recall that the expression for the output signal s(t) contains the terms p(t - nT).
 - ▶ The term p(t nT) reflects pulses delayed by nT.
 - Pulses may overlap.
 - If the duration of a pulse is longer than T, then pulses overlap.
 - Such overlapping pulses are added.
 - This situation is called partial response signaling.

Body of Function Linear Modulation

Testing Function Linear Modulation

Listing: plot_LinearModRect.m

```
%% Parameters:
   fsT = 20;
   Alphabet = [1,-1];
6 Priors = 0.5 * [1 1];
   Pulse = ones(1,fsT); % rectangular pulse
   %% symbols and Signal using our functions
   Symbols = RandomSymbols(10, Alphabet, Priors);
   Signal = LinearModulation(Symbols, Pulse, fsT);
   88 plot
   tt = (0 : length(Signal) - 1)/fsT;
   plot(tt, Signal)
   axis([0 length(Signal)/fsT -1.5 1.5])
   grid
16
   xlabel('Time/T')
   ylabel('Amplitude')
```

Linear Modulation with Rectangular Pulses

Linear Modulation with sinc-Pulses

- More interesting and practical waveforms arise when smoother pulses are used.
- A good example are truncated sinc functions.
 - The sinc function is defined as:

$$\operatorname{sinc}(x) = \frac{\sin(x)}{x}$$
, with $\operatorname{sinc}(0) = 1$.

Specifically, we will use pulses defined by

$$p(t) = \operatorname{sinc}(\pi t/T) = \frac{\sin(\pi t/T)}{\pi t/T};$$

- pulses are truncated to span L symbol periods, and
- delayed to be causal.
- Toolbox contains function Sinc(L, fsT).

A Truncated Sinc Pulse

- Pulse is very smooth,
- spans ten symbol periods,
- is zero at location of other symbols.
 - Nyquist pulse.

Linear Modulation with Sinc Pulses

- Resulting waveform is also very smooth; expect good spectral properties.
- Symbols are harder to discern; partial response signaling induces "controlled" ISI.
 - But, there is no ISI at symbol locations.
- Transients at beginning and end.

Passband Signals

- So far, all modulated signals we considered are baseband signals.
 - Baseband signals have frequency spectra concentrated near zero frequency.
- However, for wireless communications passband signals must be used.
 - Passband signals have frequency spectra concentrated around a carrier frequency f_c.
- Baseband signals can be converted to passband signals through up-conversion.
- Passband signals can be converted to baseband signals through down-conversion.

Up-Conversion

- The passband signal s_P(t) is constructed from two (digitally modulated) baseband signals, s_I(t) and s_Q(t).
 - Note that two signals can be carried simultaneously!
 - ► This is a consequence of $cos(2\pi f_c t)$ and $sin(2\pi f_c t)$ being orthogonal.

Baseband Equivalent Signals

▶ The passband signal $s_P(t)$ can be written as

$$s_P(t) = \sqrt{2} \cdot As_I(t) \cdot \cos(2\pi f_c t) + \sqrt{2} \cdot As_Q(t) \cdot \sin(2\pi f_c t)$$
.

▶ If we define $s(t) = s_I(t) - j \cdot s_Q(t)$, then $s_P(t)$ can also be expressed as

$$s_P(t) = \sqrt{2} \cdot A \cdot \Re\{s(t) \cdot \exp(j2\pi f_c t)\}.$$

- ▶ The signal s(t):
 - is called the baseband equivalent or the complex envelope of the passband signal $s_P(t)$.
 - ▶ It contains the same information as $s_P(t)$.
 - Note that s(t) is complex-valued.

Illustration: QPSK with $f_c = 2/T$

- Passband signal (top): segments of sinusoids with different phases.
 - Phase changes occur at multiples of T.
- Baseband signal (bottom) is complex valued; magnitude and phase are plotted.
 - Magnitude is constant (rectangular pulses).

MATLAB Code for QPSK Illustration

Listing: plot_LinearModQPSK.m

MATLAB Code for QPSK Illustration

Listing: plot_LinearModQPSK.m

```
subplot (2, 1, 1)
   plot( tt, Signal_PB )
   grid
22 xlabel('Time/T')
   ylabel('Amplitude')
   subplot (2, 2, 3)
   plot ( tt, abs( Signal ) )
   grid
27
   xlabel('Time/T')
   ylabel('Magnitude')
   subplot(2,2,4)
   plot( tt, angle( Signal )/pi )
32
   grid
   xlabel('Time/T')
   ylabel('Phase/\pi')
```

Frequency Domain Perspective

In the frequency domain:

$$S(f) = \left\{ egin{array}{ll} \sqrt{2} \cdot S_P(f+f_c) & ext{for } f+f_c > 0 \\ 0 & ext{else}. \end{array}
ight.$$

Factor $\sqrt{2}$ ensures both signals have the same power.

Baseband Equivalent System

- The baseband description of the transmitted signal is very convenient:
 - it is more compact than the passband signal as it does not include the carrier component,
 - while retaining all relevant information.
- However, we are also concerned what happens to the signal as it propagates to the receiver.
 - Question: Do baseband techniques extend to other parts of a passband communications system?

Passband System

Baseband Equivalent System

- The passband system can be interpreted as follows to yield an equivalent system that employs only baseband signals:
 - baseband equivalent transmitted signal: $s(t) = s_I(t) j \cdot s_O(t)$.
 - baseband equivalent channel with complex valued impulse response: h(t).
 - ▶ baseband equivalent received signal: $R(t) = R_I(t) j \cdot R_O(t)$.
 - complex valued, additive Gaussian noise: N(t)

Baseband Equivalent Channel

- The baseband equivalent channel is defined by the entire shaded box in the block diagram for the passband system (excluding additive noise).
- The relationship between the passband and baseband equivalent channel is

$$h_P(t) = \Re\{h(t) \cdot \exp(j2\pi f_c t)\}\$$

in the time domain.

Example:

$$h_P(t) = \sum_k a_k \cdot \delta(t - \tau_k) \Longrightarrow h(t) = \sum_k a_k \cdot e^{-j2\pi f_c \tau_k} \cdot \delta(t - \tau_k).$$

Baseband Equivalent Channel

In the frequency domain

$$H(f) = \left\{ egin{array}{ll} H_P(f+f_c) & ext{for } f+f_c > 0 \ 0 & ext{else}. \end{array}
ight.$$

Summary

- The baseband equivalent channel is much simpler than the passband model.
 - Up and down conversion are eliminated.
 - Expressions for signals do not contain carrier terms.
- The baseband equivalent signals are easier to represent for simulation.
 - Since they are low-pass signals, they are easily sampled.
- No information is lost when using baseband equivalent signals, instead of passband signals.
- Standard, linear system equations hold:

$$R(t) = s(t) * h(t) + n(t)$$
 and $R(f) = S(f) \cdot H(f) + N(f)$.

Conclusion: Use baseband equivalent signals and systems.